首页 > 心得体会

指数函数及其性质异构课听课心得体会

时间:2024-09-20 22:11:21
指数函数及其性质异构课听课心得体会(全文共2641字)

指数函数及其性质异构课听课心得体会

摘要:“指数函数及其性质”属于概念课,在安庆市高中数学优质课大赛上,笔者有幸听了两节同课异构课,并从课堂教学的情境引入、新知探究、成功与不足、现代教育技术应用等方面进行对比,总结反思课堂教学中现代教育技术应用的重要性以及教学中对核心素养的渗透。

关键词:同课异构,对比,反思,现代教育技术应用,核心素养

同课异构 “技”引乾坤

一、课前考虑

1. 学生的认知基础

(1)学生对指数运算的认知水平

指数范围:从整数指数幂转移到分数指数幂,再从有理数指数幂推广到实数指数幂;

指数幂的运算性质:从整数范围推广到实数范围;

底数为负数或零时:幂有时有意义,有时没有意义

(2)学生对函数的认知水平

函数概念:从初中运动的观点到高中集合的概念;

函数的表示法:明确函数的三种表示法,即解析法、图象法和列表法;

函数的性质:单调性、最值、奇偶性、定义域、值域等。指数函数有什么性质?

(3)学生对函数图象的认知水平

作图:描点法作图。指数函数图象会怎样?

图象变换:简单的平移变换、关于坐标轴对称变换。指数函数图象会具备对称性吗?

2.课堂预想

基于学生原有的认知水平和困惑,预想本节课的教学目标是:掌握指数函数的定义;能用描点法画出指数函数的图象;通过研究图象特征,探索得出指数函数的性质;最后通过对应用的分析,将指数函数定义及图象和性质落到实处,并将数学抽象、数学建模和直观想象核心素养渗透到教学中。本节课信息技术应用的关键点应该在于如何动态的过程性演示。

二、课堂对比

1. 情境引入环节的对比

甲老师以《庄子》中的句子:“一尺之锤,日取其半,万世不竭”引入,

让学生感受中华传统文化的力量、体会数学的美,也自然而然构造出函数.紧接着,老师又提出问题:如果同学们每天学习都能提高1%,一年后会如何?学生回答。而当老师给出这个数的结果为37.783…时,学生一片哗然,很是惊奇,激起了学生对指数函数问题的兴趣和渴望。老师趁机问:x 天后会如何呢?学生感受到学习新知是解决问题的需要,也是知识发展的需要。

乙老师使用正方形彩纸作为学具,通过多次折叠,让学生计算折纸的厚度与面积。学生很快说出折叠x 次之后,厚度和面积分别为2x和.一个情境引入两个指数函数,为本节教学确定了明确的教学方向。

技术运用的对比:甲老师的PPT演示很美,学生被高度吸引,并且感受到新知的过程也很自然。乙老师的FLASH动画演示形象易懂,直接指引学生进入了新知的探索。不管是甲老师的“温文婉约”还是乙老师的“简单粗暴”,笔者认为都很好的达到了情境引入的目的。

2. 新知探索环节的对比

甲老师一句“我们抽离刚才的背景,得到两个函数,请观察它们的特征”,由学生归纳总结出指数函数结构特征,包括底数的取值范围。至此,指数函数定义教学成功完成。

接着,甲老师提出研究函数的一般思路是什么,引导学生由函数图象来研究函数性质;用描点法画函数图象的三部曲学生都知道,老师在学生动手作图时强调,在列表时的取值最好在0的附近。师生分别完成图象后,老师用手机拍摄并利用多媒体展示了一位学生的作图,同时对关键处给出评价。至此,指数函数图象的教学已完成。

通过对两个函数图象的观察,探寻它们的对称关系。再利用几何画板给出5个不同底的指数函数图象,由学生观察、归纳函数的单调性、过定点等性质,从而完成指数函数性质的教学。

乙老师在引出两个函数解析式后,提出“它们在形式上有什么共同点”,并从系数、底数、指数三个角度对函数定义进行诠释。请学生回答和或1时的取值情形,老师补充讲解。接着让学生判断所给函数是否为指数函数,并请学生指出原因(不符合三项中的哪一项)。经过这样的思考和作答,学生很快就能熟知和掌握指数函数的结构特征,比老师自己讲解效果好太多。

乙老师又发动学生分组作图(1)y=2x;(2)y=3x。发现两组图象的共同对称特征后,老师利用多媒体技术将四个函数图象“分身”为两个坐标系中的两组y=2xy=3x,再观察它们的图象特征,引导学生得出区别在于单调性。而“单调性不同的原因在于什么”,底数!于是师生们自然而然发现需要研究和0两种不同情形的函数单调性。经过这种“分与合”的对比剖析,既让学生明白底数互为倒数的两指数函数图象的对称性,又将不同的底对函数单调性的影响呈现了出来。笔者认为这种利用多媒体进行“分”与“合”的操作是本节课的一大亮点!

3. 教学成功与不足环节的对比

两位老师共同的成功之处是注重定义的生成和图象的指引作用,注重学生主动学习习惯的养成。

(1)立足教材.教学围绕解读教材和生成定义、探索性质展开,重点突出;

(2)立足学生.以学生为主体,重视学生自主学习能力的培养。如通过小组讨论、提问交流、合作板书和过程评价,尊重学生,让学生感受到自己被关注,真正感受到自己是课堂的主人,学习的主人。

(3)立足理解.利用教材,并想方设法为教材提供合理的补充,以完成既定教学目标任务。

笔者认为两位教师的不足之处在没有让学生从整体上感知底数带给指数函数图象的变化。两人课堂上都对若干个特殊指数函数图象作了详尽分析,并对指数函数图象按和0进行了分类,但在每个分类中的取值都是密集性的、连续的,任意两个底数之间都存在无数个数。如何展示连续变化的底数带给指数函数图象的某种连续变化呢?笔者认为可利用几何画板软件动态展示随底数的变化,指数函数图象会如何变化,特征如何。这样既能使学生从整体上把握所有指数函数的图象,又可以增强学生学习的兴趣和进一步学习的信心。

三、课后反思

本节教学应以知识的发展为主线,以培养学生的核心素养为暗线,组织学生通过参与教学活动,了解指数函数的由来,掌握指数函数的图象与性质,总结出函数研究的一般方法。

1.知识的发展过程

从实际情境中通过数学建模抽象出其函数模型,由函数模型抽象出概念,再通过绘制函数图象研究其性质。这是研究具体函数的一般方法,具有很强的可迁移性,对学生自主探究后面将要学习的其它函数也具有重要的价值。笔者认为乙老师在知识的发展过程这方面更胜一筹,因为她在整个引导学生的过程中,每个教学段落的呈现与衔接都是顺其自然、水到渠成的,都是以学生思维发展的需要和学生主动参与共同完成的。

2.对核心素养的渗透

普通高中数学课程标准指出六个数学核心素养:数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析。“从数学知识发生发展过程的合理性、学生思维过程和合理性上加强思考,这是落实数学核心素养的关键点”。只有当数学核心素养目标与数学具体内容的教学结合在一起时,数学学科核心素养目标才能落到实处。

笔者认为,本节教学让学生通过对指数函数的探究,在经历概念形成的过程中发展数学抽象和数学建模素养,在作图的过程与观察图象发现性质的过程中发展直观想象素养,在解决实际问题的过程中发展数学建模素养。数学抽象和数学建模是支撑指数函数定义教学的重要因素,教材中对这两个素养的安排较为“节省”,指数函数定义的生成和建构过程也是体现核心素养价值的过程。本节课中利用函数图象抽象出指数函数的性质也是教学重点之一,我们不能由几个特殊函数图象直接推广得到两种一般情形,在没有较好的办法解释清楚的境况下,借助几何画板软件演示不失为一种非常有效的方法。两位教师教学理念与时俱进、教学手段紧跟时代步伐,是我们每一位一线教师学习的榜样

《指数函数及其性质异构课听课心得体会(全文共2641字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式