首页 > 实用范文

《乘法分配律》教学反思

时间:2024-11-27 05:37:04
《乘法分配律》教学反思(全文共9563字)

《乘法分配律》教学反思由的会员投稿精心推荐,小编希望以下10篇范文对你的学习工作能带来参考借鉴作用。

第1篇:《乘法分配律》教学反思

《乘法分配律》教学反思范文精选系列,如果你喜欢可以下载全文。

《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:

一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。

三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

第2篇:《乘法分配律》教学反思

以下是小编整理的《乘法分配律》教学反思范文,希望能帮助到你。

乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。

因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

一、让学生从生活实例去理解乘法分配律

一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

二、突破乘法分配律的教学难点

让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

第3篇:《乘法分配律》教学反思

希望这篇《乘法分配律》教学反思范文能对你的学习与工作带来参考借鉴作用。

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律并能初步应用这些定律进行一些简便计算的基础上进行教学的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,因为乘法分配律不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的.过程,进而培养学生的分析、推理、抽象、概括的思维能力。

上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我 ……此处隐藏4897个字……+125×8“这样的错误。究其原因,还是未能真正理解乘法的含义和乘法的运算定律。

在教学中,我也想了很多办法来解决这些问题,比如让学生背乘法分配律的含义,经常让学生做点这样的易错题。可发现效果不是很明显,尤其是有几个孩子,一会就忘记了。后来,我想:还是必须从理解乘法的意义中去学会乘法分配律。于是,我就在辅导这几名学生时,要求他们说出每一个算式表示的含义,再说一说自己做错的算式的含义,从而在对比中来发现、理解自己的错误,明白了自己错误的原因后,再来思考正确的解题思路,经过几次这样的训练,效果好多了。

第9篇:《乘法分配律》教学反思

《乘法分配律》教学反思怎么写?你可以参考一下这篇范文。

《乘法分配律的运用》教学设计及反思

教学目标

(一)使学生学会用乘法分配律进行简算,提高计算能力.

(二)培养学生灵活运用乘法运算定律进行计算的习惯.

教学重点和难点

能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计

(一)复习准备

1.口算:

(二)学习新课

我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

1.创设情境,激发学生学习积极性.

出示102×( ).

请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

2.教学例6:用简便方法计算.

(1)计算102×43.

这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一

做,对比一下,找出哪种方法简便.

在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

(2)计算102×24.

订正时说明怎样简算的?根据是什么.

(3)计算9×37+9×63.

启发提问:

①这类题目的结构形式是怎样的?有什么特点?

②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

在学生充分讨论的基础上,师板书:

提问:这题能简算吗?什么地方错了?应怎样改?

启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

2.根据乘法分配律把相等的式子用“=”连接起来.

讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

在讨论基础上得出:

第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此

要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

(四)作业

练习十四第5~10题.

教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。

第10篇:《乘法分配律》教学反思

编辑:更多《乘法分配律》教学反思范文

乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。

在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。根据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)×c=a×c+b的现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。因此,我就打破通过观察 发现 猜想 验证 概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)×c=a×b+b×c这样确凿无疑的结论。让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。从课后作业可以看出,这种教学效果明显好于以前。

在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25×(4×8)=25×4+25×8的现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。

在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。

这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的一点点。但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。

比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。还有,恐怕在规定时间内完不成任务,而把“总结”与“拓展”放错了位置;学生参与的积极性没有预想中那么高,可能与我相对缺乏激励性语言有关等等问题。

深入思考,觉得还是自己的业务不够熟练,驾驭课堂能力低下而造成的。因此,我想:今后要从以下几方面努力:

一、深入钻研,在挖掘教材上下功夫。

二、多听课,学习别人长处,多查阅资料学习,提高自己的业务水平。

最重要的是更新教学理念,在教学思路的“创新”上狠下功夫,让学生看到的天天都是“新”老师,甚至忘记“传统”形象,这是我最高的追求目标。

的小编希望以上10篇《乘法分配律》教学反思范文能够帮到你,当然,你还可以点击这里查看更多《乘法分配律》教学反思范文。

《《乘法分配律》教学反思(全文共9563字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式